Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Dan Cao, ${ }^{\text {a }}$ Dong-Zhi Liu ${ }^{\text {a* }}$ and Xue-Qin Zhou ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Material Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
Ixf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.062$
$w R$ factor $=0.123$
Data-to-parameter ratio $=16.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(4-chlorophenyl)[4-(2,2-diphenylvinyl)phenyl]amine

The title compound, $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}$, was synthesized via the Ullmann reaction. The orientations of the three aromatic rings attached to the vinyl group are determined by the $s p^{2}$ state of the vinyl C atoms. The crystal packing is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Organic photoconductive materials constitute a new type of high-technology information materials, which can generate e/h pairs upon illumination. These materials have been extensively used in copier applications, laser printers and digital xerography (Yang \& Geize, 1992).

The title compound, (I), is a charge-transfer material, which can be used in double-layered photoconductive devices. In this paper, the structure of (I), as derived from a triarylamine, is reported. The molecular structure of the crystal is illustrated in Fig. 1. The dihedral angle between the C9-C14 and C15C20 phenyl rings is $75.6(2)^{\circ}$. The orientations of the three aromatic rings attached to the vinyl group are determined by the $s p^{2}$ state of the vinyl C atoms.

(I)

The crystal packing is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions whose geometry is given in Table 1, where $\mathrm{C} 1 g, \mathrm{C} 2 g$, $\mathrm{C} 3 g$ and $\mathrm{C} 5 g$ are the centroids of the $\mathrm{C} 1-\mathrm{C} 6, \mathrm{C} 9-\mathrm{C} 14, \mathrm{C} 15-$ C20 and C27-C32 phenyl rings, respectively.

Experimental

4-(2,2-Diphenylvinyl)phenylamine (0.01 mol), 1-chloro-4-iodobenzene $(0.026 \mathrm{~mol}), \quad \mathrm{CuCl}(0.002 \mathrm{~mol}), \quad 1,10$-phenanthroline $(0.001 \mathrm{~mol})$ and $\mathrm{KOH}(24 \mathrm{~g})$ were dissolved in toluene $(30 \mathrm{ml})$. The mixture was refluxed for 6 h . After evaporation of the solvent, the residue was separated by column chromatography (silica gel, EA/ $\mathrm{PE}=1 / 200$) to give the title compound (Pautmeier et al., 1990), whose structure was identified by IR and MS. Single crystals of (I) were obtained by slow evaporation of the PE solution over a period of 10 d. M.p. 395-399 K. IR (KBr): v 3036, 2925, 1588, 1488, 1310, 1281, $1173,1090,1006,877,826,763,694$, MS: 491, $457,423,165,77 \mathrm{~cm}^{-1}$.

Received 17 September 2003

Accepted 29 September 2003
Online 7 October 2003

The molecular structure of (I), drawn with 30% probability displacement ellipsoids.

Figure 2
The crystal structure of (I), viewed along the a axis

Crystal data

$\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}$
$M_{r}=492.41$
Monoclinic, $P 2_{1} / c$
$a=9.784(3) \AA$
$b=23.620(7) \AA$
$c=11.752(4) \AA$
$\beta=105.228(5)^{\circ}$
$V=2620.5(14) \AA^{3}$
$Z=4$

Data collection

Bruker SMART1000 CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.799, T_{\text {max }}=0.970$
14866 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.123$
$S=0.99$
5355 reflections 316 parameters

5355 independent reflections
2565 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-11 \rightarrow 12$
$k=-17 \rightarrow 29$
$l=-14 \rightarrow 14$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.084 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}_{\mathrm{A}^{-3}}$
$\Delta \rho_{\max }=0.25 \mathrm{e}_{\text {min }}=-0.29 \mathrm{e}^{-3}$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{C} 2 g^{\mathrm{i}}$	0.93	2.85	$3.622(4)$	141
$\mathrm{C} 19-\mathrm{H} 19 \cdots \mathrm{C} 5 g^{\mathrm{ii}}$	0.93	2.87	$3.776(5)$	164
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{C} g^{\mathrm{iii}}$	0.93	2.65	$3.553(4)$	163
$\mathrm{C} 32-\mathrm{H} 32 \cdots \mathrm{C} 3 g^{\mathrm{iv}}$	0.93	2.95	$3.812(4)$	155

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x,-\frac{3}{2}-y, z-\frac{1}{2}$; (iii) $2-x, 1-y, 2-z$; (iv) $x, y, 1+z$.

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ distance of $0.93-0.98 \AA$, and treated as riding $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Pautmeier, L., Bussiler, H. \& Richert, R. (1990). Synth. Met. 37, 271-278.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yang, Z., Geize, H. J. (1992). Synth. Met. 47, 111-112.

