organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Dan Cao,^a Dong-Zhi Liu^a* and Xue-Qin Zhou^b

^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ^bSchool of Material Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: lxf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.062 wR factor = 0.123 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(4-chlorophenyl)[4-(2,2-diphenylvinyl)phenyl]amine

The title compound, $C_{32}H_{23}Cl_2N$, was synthesized *via* the Ullmann reaction. The orientations of the three aromatic rings attached to the vinyl group are determined by the sp^2 state of the vinyl C atoms. The crystal packing is stabilized by weak $C-H\cdots\pi$ interactions.

Comment

Organic photoconductive materials constitute a new type of high-technology information materials, which can generate e/h pairs upon illumination. These materials have been extensively used in copier applications, laser printers and digital xerography (Yang & Geize, 1992).

The title compound, (I), is a charge-transfer material, which can be used in double-layered photoconductive devices. In this paper, the structure of (I), as derived from a triarylamine, is reported. The molecular structure of the crystal is illustrated in Fig. 1. The dihedral angle between the C9–C14 and C15– C20 phenyl rings is 75.6 (2)°. The orientations of the three aromatic rings attached to the vinyl group are determined by the sp^2 state of the vinyl C atoms.

The crystal packing is stabilized by weak C–H··· π interactions whose geometry is given in Table 1, where C1g, C2g, C3g and C5g are the centroids of the C1–C6, C9–C14, C15– C20 and C27–C32 phenyl rings, respectively.

Experimental

4-(2,2-Diphenylvinyl)phenylamine (0.01 mol), 1-chloro-4-iodobenzene (0.026 mol), CuCl (0.002 mol), 1,10-phenanthroline (0.001 mol) and KOH (24 g) were dissolved in toluene (30 ml). The mixture was refluxed for 6 h. After evaporation of the solvent, the residue was separated by column chromatography (silica gel, EA/ PE = 1/200) to give the title compound (Pautmeier *et al.*, 1990), whose structure was identified by IR and MS. Single crystals of (I) were obtained by slow evaporation of the PE solution over a period of 10 d. M.p. 395–399 K. IR (KBr): ν 3036, 2925, 1588, 1488, 1310, 1281, 1173, 1090, 1006, 877, 826, 763, 694, MS: 491, 457, 423, 165, 77 cm⁻¹.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 17 September 2003 Accepted 29 September 2003 Online 7 October 2003

Figure 1

The molecular structure of (I), drawn with 30% probability displacement ellipsoids.

Figure 2

The crystal structure of (I), viewed along the a axis

Crystal data

C II CIN	$D = 1.249 \text{ M}_{\odot} \text{m}^{-3}$		
$C_{32}\Pi_{23}CI_{2}N$	$D_x = 1.248$ Mg m		
$M_r = 492.41$	Mo $K\alpha$ radiation		
Monoclinic, P_{2_1}/c	Cell parameters from 728		
$a = 9.784 (3) \text{ Å}_{2}$	reflections		
b = 23.620(7) Å	$\theta = 2.2-22.7^{\circ}$		
c = 11.752 (4) Å	$\mu = 0.27 \text{ mm}^{-1}$		
$\beta = 105.228 \ (5)^{\circ}$	T = 293 (2) K		
$V = 2620.5 (14) \text{ Å}^3$	Plate, colourless		
Z = 4	$0.36 \times 0.28 \times 0.10 \text{ mm}$		

Data collection

Bruker SMART1000 CCD area-	5355 independent reflections 2565 reflections with $L > 2\sigma(L)$
and a scans	R = 0.071
φ and ω scans	$\Lambda_{\text{int}} = 0.071$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Bruker, 1997)	$h = -11 \rightarrow 12$
$T_{\min} = 0.799, \ T_{\max} = 0.970$	$k = -17 \rightarrow 29$
14 866 measured reflections	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.062$	$w = 1/[\sigma^2(F_o^2) + (0.084P)^2]$
$wR(F^2) = 0.123$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.99	$(\Delta/\sigma)_{\rm max} = 0.001$
5355 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
316 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bonding geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots C2g^{i}$	0.93	2.85	3.622 (4)	141
C19−H19···C5g ⁱⁱ	0.93	2.87	3.776 (5)	164
$C25-H25\cdots C1g^{iii}$	0.93	2.65	3.553 (4)	163
$C32-H32\cdots C3g^{iv}$	0.93	2.95	3.812 (4)	155

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, $-\frac{3}{2} - y$, $z - \frac{1}{2}$; (iii) 2 - x, 1 - y, 2 - z; (iv) x, y, 1 + z.

H atoms were positioned geometrically, with C-H distance of 0.93–0.98 Å, and treated as riding $[U_{iso}(H) = 1.2U_{eq}(C)]$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Pautmeier, L., Bussiler, H. & Richert, R. (1990). Synth. Met. 37, 271-278.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Yang, Z., Geize, H. J. (1992). Synth. Met. 47, 111-112.